Sequences and Series 4

By using the difference method find the sim of the first n terms:
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If Y"_,T.=3n%+ 4n ,find the value of Y"Z] T,

Deduce the general term T,, and hence find 2%, ., T,.

YT, =3(n—-1)24+4n—-1)=3n>-2n-1
T, =Y" T, — Y 1T, =Bn?+4n)— Bn?-2n—-1)=6n+1
$1=1n+1 T = 212*21 T =Y Ty = [3(211)2 +4(2n)] - (3n2 +4n) = 9n® + 4n
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in partial fractions. Hence, find a simple expression for S = »_,
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The sum of the first 2n terms of a series 18n — 12n2. Find the sum of the first n terms and the nth

term of this series. Show that this series is an arithmetic.

S(2n) = 18n — 12n? = 9(2n) — 3(2n)?

Hence S(n) =9n — 3n?
Tm)=Sn)—-Sn—-1)=[9M-3n?]—-[9(n—-1)-3(n—-1)?]=12-6n
T(n)—T(n—1)=[12—-6n] —[12 — 6(n — 1)] = —6 which is a constant.

Therefore, this series is an arithmetic with a common different —6.



5. Inasetofintegers between the numbers 1 and 10,000,
(@) how many of these numbers are divisible by 3,4, 5 and 11?

(b) how many of these numbers are divisible by  3,4,5or 11?

(@) The number must be divisible by the least common multiple of 3,4, 5 and 11, which is 660.
Denote [x] be the greatest integer smaller or equal to x .
Then the number between the numbers 1 and 10,000 which are divisible by 3,4, 5 and 11

_ [10000
| 660

| =15

(b) Let A= {integers from 1 through 10000 that are multiples of 3 }
B = { integers from 1 through 10000 that are multiples of 4 }
C = { integers from 1 through 10000 that are multiples of 5 }

D= { integers from 1 through 10000 that are multiples of 11 }

Denote [x] be the greatest integer smaller or equal to x . We have :

Al = |52 = 3333, IB] = | 5= = 2500, |c| = |*5=| = 2000, ID| = |[=2=| = 909 ,
|AnB| = |=27| =833, |ancl| = || = 666,1AnD| = |*5-| = 303,

IBNC| = [1°2°0°°J =500, [BND| = [1"4"4"0] =227,[CND| = [10505"0] =181

IAnBNC| = [1"6"0"0] =166 ,|ANBND| = [1‘;‘3’20] =75 ,]JAnCND| = [1‘;220] =60,
i - (2 s

IAnNBNCND| = [fgg"] =15

By the Principle of Exclusion and Inclusion,

Required number

= (3333 + 2500 + 2000 + 909) — (833 + 666 + 303 + 500 + 227 + 181)
—(166 + 75 + 60 + 45) + 15 = 5701

6. The sum of the first n terms of a geometric sequence is given by S, = 15(1 —37"). Find
(a) thenth term,
(b) the common ratio,
(c¢) the smallest value of n such that S,,—S, < 0.01.

@ T, =Sp—Syq=15(1-3")—15(1-3""V) =15(3--D —3-1)
=15(31"" —3™) = 15[3(3™) — 37" = 15[2(3™)] = 30(3™)
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S.,—S, < 0.01 = 15— 15(1 — 3™) < 0.01 = 15(3™) < 0.01 = 3™ > 1500

log 1500

= nlog 3 >1log1500 = n > g3 = 6.65678
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Verify the identity D oD - eDeeD Hence, using the method of difference, prove that
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If v are three consecutive terms in an arithmetic progression.
+z zZz+x Xx+ . . . . .
Show that y— v ,Ty also from three consecutive terms in an arithmetic progression.

are in A.P.
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If S is the sum of the series 1 + 3x + 5x% + 7x3 + .-+ (2n + 1)x" , for x # 1, by considering
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2 X # 1.

(1 — x)S, or otherwise, show that § =
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10. (a)

(b)

(@)

(b)

The sequence of positive integers is grouped into four as follows:
(1J2J3J4)J (5I6I7I8)) (9P10P11)12)P
Show that the sum of all integers in the kth bracketis S, = 2(8k — 3).

If the integers are similarly grouped with m integers in each bracket, find the sum S,, ofall
integers in the nth bracket in terms of m and n.

Hence, show that S,,, S,,, S5, are in arithmetic progression.

Last term in the kth bracket is 4k.
First term in the kth bracketis 4k — 3.
S, =0@lk—-3)+(4k—-2)+ (4k — 1) + 4k = 16k — 6 = 2(8k — 3)

The sequence is
(1,2,...,m),( m+1,m+2,...2m),2m+ 1,2m + 2,...,3m), ...

Last term in the nth bracketis a = mn.
First term in the nth bracketis [=mn—(m—1) =mn —m + 1.

S =%(a+l) ={%[[mn—(n+1)]+mn]}=§(2mn—m+1)
Son =%(4mn—m+1)

San =%(6mn—m+1)

SZn—Sn=%(4mn—m+1)—%(a+l)=m2n

S3n—52n=%(6mn—m+1)—%(4mn_m+1)=m2n

Since Sz, — Sup = S — Sy, hence S, S5, S5, are in arithmetic progression.
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